Saturday, April 17, 2010

A.I application

Applications of AI
computer science complete reference

Artificial Intelligence in the form of expert systems and neural networks have applications in every field of human endeavor. They combine precision and computational power with pure logic, to solve problems and reduce error in operation. Already, robot expert systems are taking over many jobs in industries that are dangerous for or beyond human ability. Some of the applications divided by domains are as follows:

Heavy Industries and Space: Robotics and cybernetics have taken a leap combined with artificially intelligent expert systems. An entire manufacturing process is now totally automated, controlled and maintained by a computer system in car manufacture, machine tool production, computer chip production and almost every high-tech process. They carry out dangerous tasks like handling hazardous radioactive materials. Robotic pilots carry out complex maneuvering techniques of unmanned spacecrafts sent in space. Japan is the leading country in the world in terms of robotics research and use.

Finance: Banks use intelligent software applications to screen and analyze financial data. Softwares that can predict trends in the stock market have been created which have been known to beat humans in predictive power.

Computer Science: Researchers in quest of artificial intelligence have created spin offs like dynamic programming, object oriented programming, symbolic programming, intelligent storage management systems and many more such tools. The primary goal of creating an artificial intelligence still remains a distant dream but people are getting an idea of the ultimate path which could lead to it.

Aviation: Air lines use expert systems in planes to monitor atmospheric conditions and system status. The plane can be put on auto pilot once a course is set for the destination.
expert system
Weather Forecast: Neural networks are used for predicting weather conditions. Previous data is fed to a neural network which learns the pattern and uses that knowledge to predict weather patterns.

Swarm Intelligence: This is an approach to, as well as application of artificial intelligence similar to a neural network. Here, programmers study how intelligence emerges in natural systems like swarms of bees even though on an individual level, a bee just follows simple rules. They study relationships in nature like the prey-predator relationships that give an insight into how intelligence emerges in a swarm or collection from simple rules at an individual level. They develop intelligent systems by creating agent programs that mimic the behavior of these natural systems!

Is artificial Intelligence really possible? Can an intelligence like a human mind surpass itself and create its own image? The depth and the powers of the human mind are just being tapped. Who knows, it might be possible, only time can tell! Even if such an intelligence is created, will it share our sense of morals and justice, will it share our idiosyncrasies? This will be the next step in the evolution of intelligence. Hope I have succeeded in conveying to you the excitement and possibilities this subject holds!
Applications of AI

Q. What are the applications of AI?

A. Here are some.

game playing
You can buy machines that can play master level chess for a few hundred dollars. There is some AI in them, but they play well against people mainly through brute force computation--looking at hundreds of thousands of positions. To beat a world champion by brute force and known reliable heuristics requires being able to look at 200 million positions per second.

speech recognition
In the 1990s, computer speech recognition reached a practical level for limited purposes. Thus United Airlines has replaced its keyboard tree for flight information by a system using speech recognition of flight numbers and city names. It is quite convenient. On the the other hand, while it is possible to instruct some computers using speech, most users have gone back to the keyboard and the mouse as still more convenient.

understanding natural language
Just getting a sequence of words into a computer is not enough. Parsing sentences is not enough either. The computer has to be provided with an understanding of the domain the text is about, and this is presently possible only for very limited domains.

computer vision
The world is composed of three-dimensional objects, but the inputs to the human eye and computers' TV cameras are two dimensional. Some useful programs can work solely in two dimensions, but full computer vision requires partial three-dimensional information that is not just a set of two-dimensional views. At present there are only limited ways of representing three-dimensional information directly, and they are not as good as what humans evidently use.

expert systems
A ``knowledge engineer'' interviews experts in a certain domain and tries to embody their knowledge in a computer program for carrying out some task. How well this works depends on whether the intellectual mechanisms required for the task are within the present state of AI. When this turned out not to be so, there were many disappointing results. One of the first expert systems was MYCIN in 1974, which diagnosed bacterial infections of the blood and suggested treatments. It did better than medical students or practicing doctors, provided its limitations were observed. Namely, its ontology included bacteria, symptoms, and treatments and did not include patients, doctors, hospitals, death, recovery, and events occurring in time. Its interactions depended on a single patient being considered. Since the experts consulted by the knowledge engineers knew about patients, doctors, death, recovery, etc., it is clear that the knowledge engineers forced what the experts told them into a predetermined framework. In the present state of AI, this has to be true. The usefulness of current expert systems depends on their users having common sense.

heuristic classification
One of the most feasible kinds of expert system given the present knowledge of AI is to put some information in one of a fixed set of categories using several sources of information. An example is advising whether to accept a proposed credit card purchase. Information is available about the owner of the credit card, his record of payment and also about the item he is buying and about the establishment from which he is buying it (e.g., about whether there have been previous credit card frauds at this establishment).

No comments:

Post a Comment